	1.	What volume of a 0.153 M KCl solution is needed to provide 2.14 g of KCl?					
		(a) (b)	11.4 mL 1.04 L				
		(c)	188 mL				
		(d)	24.4 mL				
		(e)	4.39 mL				
	2.		tle of wine contains 12.5% of ethanol (CH_3CH_2OH) by volume. The density of ethanol 39 g/mL. The concentration of ethanol in the wine is:				
		(a)	2.45 M				
		(b)	12.5 % by mass				
		(c)	12.5 m				
		(d)	2.14 m				
		(e)	2.14 M				
	3.		ation is prepared by dissolving 18 g of sucrose [$C_{12}H_{22}O_{11}$; MW = 342.30 g/mol] in				
		175 g	of water. The boiling point of this solution is:				
		(a)	0.15°C				
		(b)	100.15°C				
		(c)	100°C				
		(d)	99.85°C				
		(e)	-0.15°C				
	4.	All of	the following are found in DNA except:				
		(a)	the double helix.				
		(b)	a nucleotide.				
		(c)	a peptide bond.				
		(d)	a phosphate group.				
		(e)	a sugar.				
	5.	You made a condensation polymer in lab during the preparation of:					
		(a)	luminol.				
		(b)	NaOH.				
		(c)	aspirin.				
		(d) (e)	nylon. none of these				
(5.	The 'pr	imary structure' of a protein refers to:				
		(a)	the sequence of amino acids.				
		(b)	interactions among the side chains or R-groups of the amino acids.				
		(c)	coiling due to hydrogen bonding between amino acids.				
		(d)	the alpha-helix, or pleated sheets. the weak interaction of two or more polypeptides.				
		(e)	the weak interaction of two of more polypopades.				

- 7. The functional group(s) associated with all individual amino acids is/are:
 - (a) hydroxyl
 - (b) carbonyl
 - (c) amino
 - (d) carboxyl
 - (e) both amino and carboxyl
- 8. The structure below represents the Mistic membrane protein:

What is the best description of the secondary structure of this protein?

- (a) It contains predominately alpha helices.
- (b) It contains predominately beta sheets.
- (c) It is an equal mix of alpha helix and beta sheets.
- (d) It is a pentameric structure.
- (e) The secondary structure cannot be determined from this representation.
- 9. The Mistic membrane protein shown in question 8 contains residues of both leucine (leu) and glutamic acid (glu).

Considering the structures of leu and glu, which of the following statements is most likely to be correct?

- (a) The leu and the glu are both in the membrane.
- (b) The leu and the glu are both inside the cell.
- (c) The glu is inside the membrane and the leu is outside the cell.
- (d) The leu is inside the membrane and the glu is outside the cell.
- (e) The leu is inside the cell and the glu is outside the cell.

- ___ 10. The DNA from sea urchins contains about 32% A and about 18% G. What percentages of T and C will be found in sea urchin DNA?
 - (a) Both T and C will constitute 18%.
 - (b) Both T and C will constitute 32%.
 - (c) Both T and C will constitute 50%.
 - (d) C will constitute 18% and T will constitute 32%.
 - (e) C will constitute 32% and T will constitute 18%.
- Poly(lauryl methacrylate) is used as an additive in motor oils to counter the loss of viscosity at high temperatures.

$$\begin{array}{c} \mathsf{CH}_{3} \\ - \left(-\mathsf{C-CH}_{2} \right)_{\mathbf{n}} \\ \mathsf{O} = \mathsf{C-O}(\mathsf{CH}_{2})_{11} \mathsf{CH}_{3} \end{array}$$

Poly(lauryl methacrylate) is soluble in oil because of:

- (a) H-bonding.
- (b) dipole-dipole interactions.
- (c) ionic bonding.
- (d) dispersion forces.
- (e) covalent bonding with the oil.
- 12. At low temperature poly(lauryl methacrylate), the polymer shown in question 11, is coiled into balls. At higher temperature the ball uncoils and the polymer exists as long chains. Which is correct?
 - (a) The radius of gyration (R_p) does not change.
 - (b) The radius of gyration (R_g) increased with increased temperature.
 - (c) The radius of gyration (R_g) decreased with increased temperature.
 - (d) At high temperature there is crosslinking of the polymer with the oil.
 - (e) At high temperature the polymer breaks down into the monomers.
- ____13. Which of the polymers you prepared in lab is cross-linked?
 - (a) luminol
 - (b) NaOH
 - (c) aspirin
 - (d) nylon
 - (e) slime

- 14. A co-polymer is created by free radical polymerization of a mixture of 10.0 g of styrene (C_8H_8) with 20.0 g of propene (C_3H_6) . Assuming that all of the starting materials are consumed, what is the mole fraction of styrene in the final polymer?
 - (a) 0.500
 - (b) 0.476
 - (c) 0.333
 - (d) 0.168
 - (e) 0.096
- 15. A short polymer chain has a mass of 158.24 g. This is a polymer of:
 - (a) C_2H_4
 - (b) CH₂CHCH₃
 - (c) CH₂CHCN
 - (d) CH₂CHCl
 - (e) C_2F_4
- _ 16. Isobutylene can undergo polymerization through an addition reaction. The structure for polyisobutylene would be:

(d)

(e) [1]

17. Which tripeptide can be formed from the following amino acids?

$$H_2N$$
 O H_2N O OH OH OH OH OH

(b)
$$H_2N$$
 NH_2 NH_2

(c)
$$H_2N$$
 H_2N H_3N

(e)

A folded protein has the following amino acid on the outside: 18.

A researcher is trying to design a small drug molecule to bind that protein. Which molecule would be a promising candidate?

19. Gleevec is:

- an agonist that triggers transfer of a phosphate group to a protein. (a)
- an antagonist that inhibits transfer of a phosphate group to a protein. (b)
- an antagonist that shuts down an opioid receptor. (c)
- an agonist that activates an opioid receptor. (d)
- an opiate produced from the breakdown of endorphins produced by stress. (e)

20. Use Lipinski's rules of 5 to determine whether Mytomicin C is acceptable as a drug.

$$H_2N$$
 O
 CH_2OCONH_2
 OCH_3
 O
 NH
 O

Mitomycin C MW = 334.13 LogP = 0.44

- (a) No, its MW is too low.
- (b) No, it has too many nitrogen and oxygen atoms.
- (c) No, its log P value is too low.
- (d) No, it has too many NH and OH bonds.
- (e) Yes, because it meets all the Lipinski criteria.

	: :

USEFUL INFORMATION

$$O K = -273.15$$
°C

$$\Delta T = k m$$

$$K_b$$
 for $H_2O = 0.512$ °C/m

$$K_f$$
 for $H_2O = 1.86$ °C/m

$$\pi = MRT$$

$$R = 0.0821 \frac{L \cdot atm}{K \cdot mol}$$

$$R_g = (n_{avg} \, \ell_o^{\ 2}/6)^{1/2}$$

% by volume =
$$\frac{\text{volume of solute}}{\text{volume of solution}} \times 100$$

	87 Fr (223)	55 Cs 132.9	37 Rb 85.47	19 K 39.10	11 Na 22.99	3 Li 6.941	1A (1) 1 1
	88 Ra (226)	56 Ba 9 137.3	38 Sr 7 87.62	20 Ca 0 40.08	12 Mg 9 24.31	4 Be 1 9.012	2A (2)
58 Ce 140.1 90 Th 232.0	89 Ac (227)	57 La 138.9	39 Y 88.91	21 Sc 44.96	3B		
59 Pr 140.9 91 Pa (231)	104 Rf (261)	72 Hf 178.5	40 Z r 91.22	22 Ti 47.88	4 B		
60 Nd 144.2 92 U 238.0	105 Db (262)	73 Ta 180.9	41 Nb 92.91	23 V 50.94	(S)		} -1
61 Pm (145) 93 Np (237)	106 Sg (266)	74 W 183.9	42 Mo 95.94	24 Cr 52.00	6B		erio
62 Sm 150.4 94 Pu (242)	107 Bh (262)	75 Re 186.2	43 Tc (98)	25 Mn 54.94	7B (7)		Periodic Table of the Elements
63 Eu 152.0 95 Am (243)	108 Hs (265)	76 Os 190.2	44 Ru 101.1	26 Fe 55.85	(8)		Tabl
64 Gd 157.3 96 Cm (247)	109 Mt (266)	77 Ir 192.2	45 Rh 102.9	27 Co 58.93	-8B- (9)		e of
65 Tb 158.9 97 Bk (247)	110 (269)	78 Pt 195.1	46 Pd 106.4	28 Ni 58.69	(10)		the I
66 Dy 162.5 98 Cf (251)	111 (272)	79 Au 197.0	47 Ag 107.9	29 C u 63.55	1B (11)		Elem
67 Ho 164.9 99 Es (252)	112 (277)	80 Hg 200.6	48 Cd 112.4	30 Zn 65.39	2B (12)	·	lents
68 Er 167.3 100 Fm (257)		81 T 1 204.4	49 In 114.8	31 Ga 69.72	13 Al 26.98	5 B 10.81	3A (13)
69 Tm 168.9 101 Md (258)	114 (285)	82 Pb 207.2	50 Sn 118.7	32 Ge 72.61	14 Si 28.09	6 C 12.01	4A (14)
70 Yb 173.0 102 No (259)		83 Bi 209.0	51 Sb 121.8	33 As 74.92	15 P 30.97	7 14.01	5A (US)
71 Lu 175.0 103 Lr (260)		84 Po (209)	52 Te 127.6	34 Se 78.96	16 S 32.07	8 0 16.00	6A (16)
	Silberberg, 3 rd Ed.	85 At (210)	53 I 126.9	35 Br 79.90	17 Cl 35.45	9 F 19.00	7A
	3, 3 rd Ed.	86 Rn (222)	54 Xe 131.3	36 Kr 83.80	18 Ar 39,95	10 Ne 20.18	8A (18) 2 He 4.003