| | 1. | What volume of a 0.153 M KCl solution is needed to provide 2.14 g of KCl? | | | | | | |---|----|---|--|--|--|--|--| | | | (a)
(b) | 11.4 mL
1.04 L | | | | | | | | (c) | 188 mL | | | | | | | | (d) | 24.4 mL | | | | | | | | (e) | 4.39 mL | | | | | | | 2. | | tle of wine contains 12.5% of ethanol (CH_3CH_2OH) by volume. The density of ethanol 39 g/mL. The concentration of ethanol in the wine is: | | | | | | | | (a) | 2.45 M | | | | | | | | (b) | 12.5 % by mass | | | | | | | | (c) | 12.5 m | | | | | | | | (d) | 2.14 m | | | | | | | | (e) | 2.14 M | | | | | | | 3. | | ation is prepared by dissolving 18 g of sucrose [$C_{12}H_{22}O_{11}$; MW = 342.30 g/mol] in | | | | | | | | 175 g | of water. The boiling point of this solution is: | | | | | | | | (a) | 0.15°C | | | | | | | | (b) | 100.15°C | | | | | | | | (c) | 100°C | | | | | | | | (d) | 99.85°C | | | | | | | | (e) | -0.15°C | | | | | | | 4. | All of | the following are found in DNA except: | | | | | | | | (a) | the double helix. | | | | | | | | (b) | a nucleotide. | | | | | | | | (c) | a peptide bond. | | | | | | | | (d) | a phosphate group. | | | | | | | | (e) | a sugar. | | | | | | | 5. | You made a condensation polymer in lab during the preparation of: | | | | | | | | | (a) | luminol. | | | | | | | | (b) | NaOH. | | | | | | | | (c) | aspirin. | | | | | | | | (d)
(e) | nylon. none of these | | | | | | | | | | | | | | | (| 5. | The 'pr | imary structure' of a protein refers to: | | | | | | | | (a) | the sequence of amino acids. | | | | | | | | (b) | interactions among the side chains or R-groups of the amino acids. | | | | | | | | (c) | coiling due to hydrogen bonding between amino acids. | | | | | | | | (d) | the alpha-helix, or pleated sheets. the weak interaction of two or more polypeptides. | | | | | | | | (e) | the weak interaction of two of more polypopades. | | | | | - 7. The functional group(s) associated with all individual amino acids is/are: - (a) hydroxyl - (b) carbonyl - (c) amino - (d) carboxyl - (e) both amino and carboxyl - 8. The structure below represents the Mistic membrane protein: What is the best description of the secondary structure of this protein? - (a) It contains predominately alpha helices. - (b) It contains predominately beta sheets. - (c) It is an equal mix of alpha helix and beta sheets. - (d) It is a pentameric structure. - (e) The secondary structure cannot be determined from this representation. - 9. The Mistic membrane protein shown in question 8 contains residues of both leucine (leu) and glutamic acid (glu). Considering the structures of leu and glu, which of the following statements is most likely to be correct? - (a) The leu and the glu are both in the membrane. - (b) The leu and the glu are both inside the cell. - (c) The glu is inside the membrane and the leu is outside the cell. - (d) The leu is inside the membrane and the glu is outside the cell. - (e) The leu is inside the cell and the glu is outside the cell. - ___ 10. The DNA from sea urchins contains about 32% A and about 18% G. What percentages of T and C will be found in sea urchin DNA? - (a) Both T and C will constitute 18%. - (b) Both T and C will constitute 32%. - (c) Both T and C will constitute 50%. - (d) C will constitute 18% and T will constitute 32%. - (e) C will constitute 32% and T will constitute 18%. - Poly(lauryl methacrylate) is used as an additive in motor oils to counter the loss of viscosity at high temperatures. $$\begin{array}{c} \mathsf{CH}_{3} \\ - \left(-\mathsf{C-CH}_{2} \right)_{\mathbf{n}} \\ \mathsf{O} = \mathsf{C-O}(\mathsf{CH}_{2})_{11} \mathsf{CH}_{3} \end{array}$$ Poly(lauryl methacrylate) is soluble in oil because of: - (a) H-bonding. - (b) dipole-dipole interactions. - (c) ionic bonding. - (d) dispersion forces. - (e) covalent bonding with the oil. - 12. At low temperature poly(lauryl methacrylate), the polymer shown in question 11, is coiled into balls. At higher temperature the ball uncoils and the polymer exists as long chains. Which is correct? - (a) The radius of gyration (R_p) does not change. - (b) The radius of gyration (R_g) increased with increased temperature. - (c) The radius of gyration (R_g) decreased with increased temperature. - (d) At high temperature there is crosslinking of the polymer with the oil. - (e) At high temperature the polymer breaks down into the monomers. - ____13. Which of the polymers you prepared in lab is cross-linked? - (a) luminol - (b) NaOH - (c) aspirin - (d) nylon - (e) slime - 14. A co-polymer is created by free radical polymerization of a mixture of 10.0 g of styrene (C_8H_8) with 20.0 g of propene (C_3H_6) . Assuming that all of the starting materials are consumed, what is the mole fraction of styrene in the final polymer? - (a) 0.500 - (b) 0.476 - (c) 0.333 - (d) 0.168 - (e) 0.096 - 15. A short polymer chain has a mass of 158.24 g. This is a polymer of: - (a) C_2H_4 - (b) CH₂CHCH₃ - (c) CH₂CHCN - (d) CH₂CHCl - (e) C_2F_4 - _ 16. Isobutylene can undergo polymerization through an addition reaction. The structure for polyisobutylene would be: (d) (e) [1] ## 17. Which tripeptide can be formed from the following amino acids? $$H_2N$$ O H_2N O OH OH OH OH OH (b) $$H_2N$$ NH_2 NH_2 (c) $$H_2N$$ H_2N H_3N (e) A folded protein has the following amino acid on the outside: 18. A researcher is trying to design a small drug molecule to bind that protein. Which molecule would be a promising candidate? ## 19. Gleevec is: - an agonist that triggers transfer of a phosphate group to a protein. (a) - an antagonist that inhibits transfer of a phosphate group to a protein. (b) - an antagonist that shuts down an opioid receptor. (c) - an agonist that activates an opioid receptor. (d) - an opiate produced from the breakdown of endorphins produced by stress. (e) 20. Use Lipinski's rules of 5 to determine whether Mytomicin C is acceptable as a drug. $$H_2N$$ O CH_2OCONH_2 OCH_3 O NH O Mitomycin C MW = 334.13 LogP = 0.44 - (a) No, its MW is too low. - (b) No, it has too many nitrogen and oxygen atoms. - (c) No, its log P value is too low. - (d) No, it has too many NH and OH bonds. - (e) Yes, because it meets all the Lipinski criteria. | | :
: | |--|--------| | | | | | | ## **USEFUL INFORMATION** $$O K = -273.15$$ °C $$\Delta T = k m$$ $$K_b$$ for $H_2O = 0.512$ °C/m $$K_f$$ for $H_2O = 1.86$ °C/m $$\pi = MRT$$ $$R = 0.0821 \frac{L \cdot atm}{K \cdot mol}$$ $$R_g = (n_{avg} \, \ell_o^{\ 2}/6)^{1/2}$$ % by volume = $$\frac{\text{volume of solute}}{\text{volume of solution}} \times 100$$ | | 87
Fr
(223) | 55
Cs
132.9 | 37
Rb
85.47 | 19
K
39.10 | 11
Na
22.99 | 3
Li
6.941 | 1A
(1)
1
1 | |---|---------------------------------|---------------------------|---------------------------|----------------------------|--------------------------|--------------------|--------------------------------| | | 88
Ra
(226) | 56
Ba
9 137.3 | 38
Sr
7 87.62 | 20
Ca
0 40.08 | 12
Mg
9 24.31 | 4
Be
1 9.012 | 2A (2) | | 58
Ce
140.1
90
Th
232.0 | 89
Ac
(227) | 57
La
138.9 | 39
Y
88.91 | 21
Sc
44.96 | 3B | | | | 59
Pr
140.9
91
Pa
(231) | 104
Rf
(261) | 72
Hf
178.5 | 40
Z r
91.22 | 22
Ti
47.88 | 4 B | | | | 60
Nd
144.2
92
U
238.0 | 105
Db
(262) | 73
Ta
180.9 | 41
Nb
92.91 | 23
V
50.94 | (S) | | } -1 | | 61
Pm
(145)
93
Np
(237) | 106
Sg
(266) | 74
W
183.9 | 42
Mo
95.94 | 24
Cr
52.00 | 6B | | erio | | 62
Sm
150.4
94
Pu
(242) | 107
Bh
(262) | 75
Re
186.2 | 43
Tc
(98) | 25
Mn
54.94 | 7B
(7) | | Periodic Table of the Elements | | 63
Eu
152.0
95
Am
(243) | 108
Hs
(265) | 76
Os
190.2 | 44
Ru
101.1 | 26
Fe
55.85 | (8) | | Tabl | | 64
Gd
157.3
96
Cm
(247) | 109
Mt
(266) | 77
Ir
192.2 | 45
Rh
102.9 | 27
Co
58.93 | -8B-
(9) | | e of | | 65
Tb
158.9
97
Bk
(247) | 110 (269) | 78
Pt
195.1 | 46
Pd
106.4 | 28
Ni
58.69 | (10) | | the I | | 66
Dy
162.5
98
Cf
(251) | 111
(272) | 79
Au
197.0 | 47
Ag
107.9 | 29
C u
63.55 | 1B
(11) | | Elem | | 67
Ho
164.9
99
Es
(252) | 112
(277) | 80
Hg
200.6 | 48
Cd
112.4 | 30
Zn
65.39 | 2B
(12) | · | lents | | 68
Er
167.3
100
Fm
(257) | | 81
T 1
204.4 | 49
In
114.8 | 31
Ga
69.72 | 13
Al
26.98 | 5
B
10.81 | 3A
(13) | | 69
Tm
168.9
101
Md
(258) | 114 (285) | 82
Pb
207.2 | 50
Sn
118.7 | 32
Ge
72.61 | 14
Si
28.09 | 6
C
12.01 | 4A
(14) | | 70
Yb
173.0
102
No
(259) | | 83
Bi
209.0 | 51
Sb
121.8 | 33
As
74.92 | 15
P
30.97 | 7
14.01 | 5A
(US) | | 71
Lu
175.0
103
Lr
(260) | | 84
Po
(209) | 52
Te
127.6 | 34
Se
78.96 | 16
S
32.07 | 8
0
16.00 | 6A
(16) | | | Silberberg, 3 rd Ed. | 85
At
(210) | 53
I
126.9 | 35
Br
79.90 | 17
Cl
35.45 | 9
F
19.00 | 7A | | | 3, 3 rd Ed. | 86
Rn
(222) | 54
Xe
131.3 | 36
Kr
83.80 | 18
Ar
39,95 | 10
Ne
20.18 | 8A
(18)
2
He
4.003 |